On the generating fields of Kloosterman sums

Shenxing Zhang

Liaocheng University

2021-05-17

Shenxing Zhang On the generating fields of Kloosterman sums

Table of Contents

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Let $f(x) \in \mathbb{F}_q[x]$ be a polynomial over a finite field with $q = p^d$ elements, where p is a rational prime.

伺 ト イヨト イヨト

Let $f(x) \in \mathbb{F}_q[x]$ be a polynomial over a finite field with $q = p^d$ elements, where p is a rational prime. Define the exponential sum

$$\mathcal{S}_1(f) := \sum_{x \in \mathbb{F}_q} \zeta_{
ho}^{\mathrm{Tr}(f(x))} \in \mathbb{Z}[\zeta_{
ho}].$$

Let $f(x) \in \mathbb{F}_q[x]$ be a polynomial over a finite field with $q = p^d$ elements, where p is a rational prime. Define the exponential sum

$$\mathcal{S}_1(f) := \sum_{x \in \mathbb{F}_q} \zeta_{
ho}^{\operatorname{Tr}(f(x))} \in \mathbb{Z}[\zeta_{
ho}].$$

A basic problem is

- as a complex number, $|S_1(f)| = ?$
- 2 as a *p*-adic number, $|S_1(f)|_p = ?$
- as an algebraic number, deg $S_1(f) = ?$

L-function

The first two questions have been studied extensively in the literature. Define

$$L(t, f) := \prod_{x \in \overline{\mathbb{F}}_p} \left(1 - \operatorname{Tr}_{\mathbb{F}_q(x)/\mathbb{F}_p}(f(x)) t^{\deg x} \right)^{-1} = \exp\left(\sum_k S_k(f) \frac{t^k}{k}\right)$$

where $S_k(f) := \sum_{x \in \mathbb{F}_{q^k}} \zeta_p^{\operatorname{Tr}(f(x))} \in \mathbb{Z}[\zeta_p].$

• • = • • = •

э

L-function

The first two questions have been studied extensively in the literature. Define

$$L(t,f) := \prod_{x \in \overline{\mathbb{F}}_p} \left(1 - \operatorname{Tr}_{\mathbb{F}_q(x)/\mathbb{F}_p}(f(x)) t^{\deg x} \right)^{-1} = \exp\left(\sum_k S_k(f) \frac{t^k}{k}\right)$$

where $S_k(f) := \sum_{x \in \mathbb{F}_{q^k}} \zeta_{\rho}^{\operatorname{Tr}(f(x))} \in \mathbb{Z}[\zeta_{\rho}].$

Theorem (Dwork-Bombieri-Grothendick)

L(t, f) is a rational function.

伺 ト イヨ ト イヨト

L-function

The first two questions have been studied extensively in the literature. Define

$$L(t,f) := \prod_{x \in \overline{\mathbb{F}}_p} \left(1 - \operatorname{Tr}_{\mathbb{F}_q(x)/\mathbb{F}_p}(f(x)) t^{\deg x} \right)^{-1} = \exp\left(\sum_k S_k(f) \frac{t^k}{k}\right)$$

where
$$S_k(f) := \sum_{x \in \mathbb{F}_{q^k}} \zeta_p^{\mathrm{Tr}(f(x))} \in \mathbb{Z}[\zeta_p].$$

Theorem (Dwork-Bombieri-Grothendick)

L(t, f) is a rational function.

Write

$$L(t, f) = \frac{\prod_j (1 - \beta_j t)}{\prod_j (1 - \alpha_j t)}.$$

Then

$$S_k(t) = \sum_i \alpha_i^{k} - \sum_j \beta_j^{k}.$$

N . I.

• • = • • = •

How to estimate the characteristic roots α_i and β_j ? We need ℓ -adic method. To describe it, let's recall the definition of sheaves.

伺 ト イヨト イヨト

Sheaf

How to estimate the characteristic roots α_i and β_j ? We need ℓ -adic method. To describe it, let's recall the definition of sheaves. Given a topological space X, there is a site Top(X) with

- objects: the open subsets of X;
- 2 morphisms: the injection of open sets;
- 3 coverings: normal open coverings.

伺 ト イヨト イヨト

Sheaf

How to estimate the characteristic roots α_i and β_j ? We need ℓ -adic method. To describe it, let's recall the definition of sheaves. Given a topological space X, there is a site Top(X) with

- objects: the open subsets of X;
- Ø morphisms: the injection of open sets;
- overings: normal open coverings.

A sheaf \mathcal{F} on a topological space X over a field E is a contravariant functor $\operatorname{Top}(X)^{\operatorname{op}} \to \operatorname{Vect}/E$, which can be uniquely glued locally. That's to say, for any open covering $U = \bigcup_i U_i$,

$$\mathcal{F}(U) \to \prod_i \mathcal{F}(U_i)
ightarrow \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

is exact.

Let X be a scheme. Denote by $X_{\text{ét}}$ the site with

- objects: étale scheme $X' \to X$;
- 2 morphisms: étale morphisms;
- **③** coverings: { φ_i : X'_i → X'} with $X' = \cup \varphi_i(X'_i)$.

伺 ト イヨ ト イヨト

Let X be a scheme. Denote by $X_{\text{ét}}$ the site with

1 objects: étale scheme $X' \to X$;

2 morphisms: étale morphisms;

3 coverings: $\{\varphi_i : X'_i \to X'\}$ with $X' = \cup \varphi_i(X'_i)$.

Fix a prime $\ell \neq p$ and let *E* be a finite extension of \mathbb{Q}_{ℓ} . An ℓ -adic sheaf is a sheaf on $X_{\text{ét}}$ over *E* (which is constructible at every finite level).

Let K be c.d.v.f, with higher ramification groups $I^{(r)}, r \ge 0$.

• • = • • = •

Let K be c.d.v.f, with higher ramification groups $I^{(r)}, r \ge 0$. For any *E*-representation M of P, we have a decomposition $M = \oplus M(x)$, such that

$$M(0) = M^P$$
, $M(x)^{I(x)} = 0$, $M(x)^{I(y)} = M(x)$, $y > x > 0$.

伺 ト イヨト イヨト

Let K be c.d.v.f, with higher ramification groups $I^{(r)}, r \ge 0$. For any *E*-representation M of P, we have a decomposition $M = \oplus M(x)$, such that

$$M(0) = M^P$$
, $M(x)^{I(x)} = 0$, $M(x)^{I(y)} = M(x)$, $y > x > 0$.

We call x a break if $M(x) \neq 0$. Define

$$Sw(M) = \sum x \dim M(x).$$

• • = • • = •

Curves

Let *C* be a proper smooth geometrically connected curve over a perfect field \mathbb{F} , with function field $K = \mathbb{F}(C)$. For any closed point $x \in C(\mathbb{F})$, we have the completion K_x .

伺 ト イヨト イヨト

Curves

Let *C* be a proper smooth geometrically connected curve over a perfect field \mathbb{F} , with function field $K = \mathbb{F}(C)$. For any closed point $x \in C(\mathbb{F})$, we have the completion K_x .

For any non-empty open $U \subset C$, we have an equivalence of abelian categories

$$\{ \text{lisse } E\text{-sheaves on } U \} \longrightarrow \text{Rep}_E^c \pi_1(U, \overline{\eta})$$

$$\mathcal{F} \longmapsto \mathcal{F}_{\overline{\eta}}.$$

伺 ト イヨト イヨト

Curves

Let *C* be a proper smooth geometrically connected curve over a perfect field \mathbb{F} , with function field $K = \mathbb{F}(C)$. For any closed point $x \in C(\mathbb{F})$, we have the completion K_x .

For any non-empty open $U \subset C$, we have an equivalence of abelian categories

$$\{ \text{lisse } E\text{-sheaves on } U \} \longrightarrow \text{Rep}_E^c \pi_1(U, \overline{\eta})$$

$$\mathcal{F} \longmapsto \mathcal{F}_{\overline{\eta}}.$$

Since $\pi_1(U, \overline{\eta})$ is a quotient of $\operatorname{Gal}(\overline{K}/K)$, the decomposition group $D_x \subset \operatorname{Gal}(\overline{K}/K)$ acts on $\mathcal{F}_{\overline{\eta}}$. We can define Swan conductor of \mathcal{F} at x. If $x \in U$, the action of I_x is trivial.

We will take $\mathbb{F} = \mathbb{F}_p$, $C = \mathbb{P}^1$ and $U = \mathbb{G}_m$.

通 ト イ ヨ ト イ ヨ ト

Assume that $\mu_p \subseteq E$. Deligne constructed a certain locally free of rank one ℓ -adic sheaf $\mathcal{F}_{\ell}(f)$ over E on $\mathbb{G}_{a,\overline{\mathbb{F}}_p} = \operatorname{Spec} \overline{\mathbb{F}}_p[X]$, such that

$$L(t, f) = \prod_i \det(1 - t \operatorname{Frob}, \operatorname{H}^i_c)^{(-1)^{i+1}}$$

and

$$S_k(f) = \sum_i (-1)^i \operatorname{Tr}(\operatorname{Frob}^k, \operatorname{H}^i_c).$$

Here, Frob is the geometric Frobenius (inverse of $\alpha \mapsto \alpha^p$), $\mathrm{H}_{c}^{i} = \mathrm{H}_{c}^{i}(\mathbb{G}_{a,\overline{\mathbb{F}}_{p}}, \mathcal{F}_{\ell}(f))$ is the compact cohomology.

l-adic method, continue

Denote by ω_{ij} the eigenvalues of Frob on H_{c}^{i} , then

$$S_k(f) = \sum_{ij} (-1)^i \omega_{ij}^k.$$

Denote by $B_i = \dim_E H_c^i$ the Betti number.

Theorem (Deligne)

 ω_{ij} is an algebraic integer and all its conjugates over \mathbb{Q} has same absolute value $q^{r_{ij}/2}$, where the weight $0 \leq r_{ij} \leq i$ are integers.

Thus

$$|S_k| \leq \sum_i B_i q^{ki/2}.$$

• • = • • = •

General case

In general,

- V a closed variety over \mathbb{F}_q of \mathbb{A}^N ,
- **③** f a regular function on V defined over \mathbb{F}_q ,
- χ a multiplicative character on \mathbb{F}_q^{\times} , $\chi_k = \chi \circ \mathbf{N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}$,
- \bigcirc g an invertible regular function on V.

伺下 イヨト イヨト

General case

In general,

- V a closed variety over \mathbb{F}_q of \mathbb{A}^N ,

③ f a regular function on V defined over \mathbb{F}_q ,

• χ a multiplicative character on \mathbb{F}_q^{\times} , $\chi_k = \chi \circ \mathbf{N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}$,

 \bigcirc g an invertible regular function on V.

Define

$$S_k = \sum_{x \in V(\mathbb{F}_{q^k})} \psi_k(f(x)) \chi_k(g(x)).$$

Then Deligne's results still hold in this case. Moreover, Bombieri proved that the number of characteristic roots is at most

$$(4 \max \{ \deg V + 1, \deg f \} + 5)^{2N+1}$$

Table of Contents

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Now we will consider

$$V = V(X_1 \cdots X_n - a), \quad f = X_1 + \cdots + X_n.$$

Let $\chi = {\chi_1, \ldots, \chi_n}$ be an unordered *n*-tuple of multiplicative characters $\chi_i : \mathbb{F}_q^{\times} \to \mu_{q-1}$. Define the Kloosterman sum as

$$\mathrm{Kl}_{n}(\psi, \chi, q, a) = \sum_{\substack{x_{1}\cdots x_{n}=a\\x_{i}\in\mathbb{F}_{q}}} \chi_{1}(x_{1})\cdots \chi_{n}(x_{n})\psi\big(\mathrm{Tr}_{\mathbb{F}_{q}/\mathbb{F}_{p}}(x_{1}+\cdots+x_{n})\big).$$

伺 と く ヨ と く ヨ と

Now we will consider

$$V = V(X_1 \cdots X_n - a), \quad f = X_1 + \cdots + X_n.$$

Let $\chi = {\chi_1, \ldots, \chi_n}$ be an unordered *n*-tuple of multiplicative characters $\chi_i : \mathbb{F}_q^{\times} \to \mu_{q-1}$. Define the Kloosterman sum as

$$\mathrm{Kl}_{n}(\psi, \chi, q, a) = \sum_{\substack{x_{1}\cdots x_{n}=a\\x_{i}\in\mathbb{F}_{q}}} \chi_{1}(x_{1})\cdots \chi_{n}(x_{n})\psi\big(\mathrm{Tr}_{\mathbb{F}_{q}/\mathbb{F}_{p}}(x_{1}+\cdots+x_{n})\big).$$

In this case, there are *n* characteristic roots with same weight n-1. Hence $|\mathrm{Kl}_n| \leq nq^{(n-1)/2}$.

高 と く ヨ と く ヨ と

Galois action

Clearly, $\mathrm{Kl}_{n} \in \mathbb{Z}[\mu_{\mathit{pc}}]$, where

 $c = \operatorname{lcm}_i \{\operatorname{ord}(\chi_i)\}$

divides q - 1.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Galois action

Clearly, $\mathrm{Kl}_n \in \mathbb{Z}[\mu_{pc}]$, where

 $c = \operatorname{lcm}_i \{\operatorname{ord}(\chi_i)\}$

divides q - 1. Write

$$\operatorname{Gal}(\mathbb{Q}(\mu_{pc})/\mathbb{Q}) = \left\{ \sigma_t \tau_w \mid t \in (\mathbb{Z}/p\mathbb{Z})^{\times}, w \in (\mathbb{Z}/c\mathbb{Z})^{\times} \right\},\$$

where

$$\sigma_t(\zeta_p) = \zeta_p^t, \quad \sigma_t(\zeta_c) = \zeta_c,$$

$$\tau_w(\zeta_p) = \zeta_p, \quad \tau_w(\zeta_c) = \zeta_c^w.$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Galois action

Clearly, $\mathrm{Kl}_n \in \mathbb{Z}[\mu_{pc}]$, where

 $c = \operatorname{lcm}_i \{\operatorname{ord}(\chi_i)\}$

divides q - 1. Write

$$\operatorname{Gal}(\mathbb{Q}(\mu_{pc})/\mathbb{Q}) = \left\{ \sigma_t \tau_w \mid t \in (\mathbb{Z}/p\mathbb{Z})^{\times}, w \in (\mathbb{Z}/c\mathbb{Z})^{\times} \right\},\$$

where

$$\sigma_t(\zeta_p) = \zeta_p^t, \quad \sigma_t(\zeta_c) = \zeta_c,$$

$$\tau_w(\zeta_p) = \zeta_p, \quad \tau_w(\zeta_c) = \zeta_c^w.$$

A basic observation tells

$$\sigma_t \tau_w \mathrm{Kl}_n(\psi, \chi, q, a) = \prod \chi(t)^{-w} \mathrm{Kl}_n(\psi, \chi^w, q, at^n).$$

To study the generating fields of Kl_n , we need to consider the distinctness of different Kloosterman sums.

When $\chi = \mathbf{1} = \{1, \dots, 1\}$ is trivial, it's easy to see that a, b conjugate $\implies \operatorname{Kl}_n(\psi, \mathbf{1}, q, a) = \operatorname{Kl}_n(\psi, \mathbf{1}, q, b).$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

When $\boldsymbol{\chi} = \boldsymbol{1} = \{1, \dots, 1\}$ is trivial, it's easy to see that

$$a, b \text{ conjugate } \implies \operatorname{Kl}_n(\psi, \mathbf{1}, q, a) = \operatorname{Kl}_n(\psi, \mathbf{1}, q, b).$$

When $p > (2n^{2d} + 1)^2$ (Fisher), or $p \ge (d - 1)n + 2$ and p does not divide a certain integer (Wan), this is necessary. In general, it's conjectured that it's true when $p \ge nd$. Thus

$${\sf deg}\,{
m Kl}_{\it n}(\psi,{f 1},q,{m a})=rac{
ho-1}{(
ho-1,n)}$$

under these conditions.

• • = • • = •

For our purpose, we need a different sheaf. Deligne and Katz defined the Kloosterman sheaf

$$\mathcal{K}l = \mathcal{K}l_{n,q}(\psi, \chi)$$

on $\mathbb{G}_m \otimes \mathbb{F}_q = \operatorname{Spec} \mathbb{F}_q[X, X^{-1}]$, with the following properties:

- I is lisse (locally constant at every finite level) of rank n and pure of weight n − 1.
- **2** For any $a \in \mathbb{F}_q^{\times}$, $\operatorname{Tr}(\operatorname{Frob}_a, \mathcal{K}l_{\overline{a}}) = (-1)^{n-1} \operatorname{Kl}_n(\psi, \chi, q, a)$.
- **3** \mathcal{K} l is tame at 0 (Swan= 0).
- Kl is totally wild with Swan conductor 1 at ∞. So all ∞-breaks are 1/n.

伺下 イヨト イヨト

Fisher gave a descent of Kloosterman sheaves along an extension of finite fields. For any $a \in \mathbb{F}_q^{\times}$, he defined a lisse sheaf $\mathcal{F}_a(\chi)$ on $\mathbb{G}_m \otimes \mathbb{F}_p$, such that $\mathcal{F}_a(\chi) | \mathbb{G}_m \otimes \mathbb{F}_q = \bigotimes_{\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)} (t \mapsto \sigma(a)t^n)^* \mathcal{K}l_n(\psi \circ \sigma^{-1}, \chi \circ \sigma^{-1}).$

• $\mathcal{F}_a(\chi)$ is lisse of rank n^d and pure of weight d(n-1).

- So For any t ∈ 𝔽[×]_p, Tr(Frob_t, 𝓕_a(\chi)_t) = (−1)^{(n−1)d}Kl_n(ψ, \chi, q, atⁿ).
- $\mathcal{F}_{a}(\chi)$ is tame at 0 and its ∞ -breaks are at most 1.

Lemma

Let $\mathcal{F}, \mathcal{F}'$ be lisse sheaves on $\mathbb{G}_m \otimes \mathbb{F}_p$ of same rank r and pure of the same weight w. Assume that there is a root of unity λ such that for any $t \in \mathbb{F}_p^{\times}$, we have

$$\operatorname{Tr}(\operatorname{Frob}_t, \mathcal{F}_{\overline{t}}) = \lambda \operatorname{Tr}(\operatorname{Frob}_t, \mathcal{F}'_{\overline{t}}).$$

Let \mathcal{G} be a geometrically irreducible sheaf of rank s on $\mathbb{G}_m \otimes \mathbb{F}_p$, pure of weight w, such that $\mathcal{G} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$ occurs exactly once in $\mathcal{F} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$. Then $\mathcal{G} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$ occurs at least once in $\mathcal{F}' \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$, provided that $p > [2rs(M_0 + M_\infty) + 1]^2$, where M_η is the largest η -break of $\mathcal{F} \oplus \mathcal{F}'$. Assume not. Applying the Lefschetz Trace Formula to $\mathcal{G}^{\vee}\otimes\mathcal{F}$ and $\mathcal{G}^{\vee}\otimes\mathcal{F}'$, we have

$$\sum_{i=0}^{2} (-1)^{i} \mathrm{Tr} \big(\mathrm{Frob}, \mathrm{H}_{c}^{i}(\mathcal{G}^{\vee} \otimes \mathcal{F}) \big) = \lambda \sum_{i=0}^{2} (-1)^{i} \mathrm{Tr} \big(\mathrm{Frob}, \mathrm{H}_{c}^{i}(\mathcal{G}^{\vee} \otimes \mathcal{F}') \big).$$

伺 ト イヨ ト イヨト

Assume not. Applying the Lefschetz Trace Formula to $\mathcal{G}^{\vee}\otimes\mathcal{F}$ and $\mathcal{G}^{\vee}\otimes\mathcal{F}'$, we have

$$\sum_{i=0}^{2} (-1)^{i} \mathrm{Tr} \big(\mathrm{Frob}, \mathrm{H}_{c}^{i}(\mathcal{G}^{\vee} \otimes \mathcal{F}) \big) = \lambda \sum_{i=0}^{2} (-1)^{i} \mathrm{Tr} \big(\mathrm{Frob}, \mathrm{H}_{c}^{i}(\mathcal{G}^{\vee} \otimes \mathcal{F}') \big).$$

Apply Euler-Poincaré formula

$$\begin{aligned} h_c^0(\mathcal{F}) &- h_c^1(\mathcal{F}) + h_c^2(\mathcal{F}) \\ = & \operatorname{rank} \mathcal{F} \cdot \chi_c(\mathbb{G}_m \otimes \mathbb{F}_p) - \operatorname{Sw}_0(\mathcal{F}) - \operatorname{Sw}_\infty(\mathcal{F}) \end{aligned}$$

to estimate $Tr(Frob, H_c^1)$ (weight ≤ 1 by Weil II).

• • = • • = •

伺 ト イヨト イヨト

Assume that p > 2n + 1 and χ is not Kummer-induced.

伺下 イヨト イヨト

Assume that p > 2n + 1 and χ is not Kummer-induced. Then $\mathcal{F}_a(\chi)$ has a highest weight with multiplicity one.

伺下 イヨト イヨト

Assume that p > 2n + 1 and χ is not Kummer-induced. Then $\mathcal{F}_a(\chi)$ has a highest weight with multiplicity one. Thus it has a subsheaf $\mathcal{G}_a(\chi)$ such that, as representations of the Lie algebra $\mathfrak{g}(\mathcal{F}_a(\chi))$, $\mathcal{G}_a(\chi)$ is the irreducible sub-representation with highest weight.

伺 ト イヨト イヨト

Assume that p > 2n + 1 and χ is not Kummer-induced. Then $\mathcal{F}_a(\chi)$ has a highest weight with multiplicity one. Thus it has a subsheaf $\mathcal{G}_a(\chi)$ such that, as representations of the Lie algebra $\mathfrak{g}(\mathcal{F}_a(\chi))$, $\mathcal{G}_a(\chi)$ is the irreducible sub-representation with highest weight. Moreover, it is geometrically irreducible and occurs exactly once in $\mathcal{F}_a(\chi)$ over $\mathbb{G}_m \otimes \overline{\mathbb{F}}_p$.

伺 ト イヨト イヨト

Corollary

Let $a, b \in \mathbb{F}_q^{\times}$ and let χ and ρ be n-tuples of multiplicative characters $\chi_i, \rho_j : \mathbb{F}_q^{\times} \to \overline{\mathbb{Q}}_\ell^{\times}$. Assume that $p > (2n^{2d} + 1)^2$, χ is not Kummer-induced and

$$\mathrm{Kl}_n(\psi, \boldsymbol{\chi}, \boldsymbol{q}, \boldsymbol{a}) = \lambda \mathrm{Kl}_n(\psi, \boldsymbol{\rho}, \boldsymbol{q}, \boldsymbol{b})$$

for a fixed root of unity $\lambda \in \mu_{q-1}$. Then $\mathcal{G}_{a}(\chi) \otimes \mathcal{L}_{\prod \overline{\chi}} | \mathbb{G}_{m} \otimes \overline{\mathbb{F}}_{p}$ occurs at least once in $\mathcal{F}_{b}(\rho) \otimes \mathcal{L}_{\prod \overline{\rho}} | \mathbb{G}_{m} \otimes \overline{\mathbb{F}}_{p}$.

Here \mathcal{L}_{χ} is a rank one lisse sheaf on $\mathbb{G}_m\otimes\mathbb{F}_p$ such that for $t\in\mathbb{F}_p^{\times}$,

$$\operatorname{Tr}(\operatorname{Frob}_t, (\mathcal{L}_{\chi})_{\overline{t}}) = \chi(t).$$

Corollary, proof

Denote by

$$\mathcal{F} = \mathcal{F}_{a}(\chi) \otimes \mathcal{L}_{\prod \overline{\chi}}, \ \mathcal{F}' = \mathcal{F}_{b}(\rho) \otimes \mathcal{L}_{\prod \overline{\rho}}, \ \mathcal{G} = \mathcal{G}_{a}(\chi) \otimes \mathcal{L}_{\prod \overline{\chi}}.$$

For $t \in \mathbb{F}_p^{\times}$, we have $\sigma_t \lambda = \lambda$ and thus

$$(-1)^{(n-1)d} \operatorname{Tr}(\operatorname{Frob}_{t}, \mathcal{F}_{\overline{t}}) = \prod \overline{\chi}(t) \cdot \operatorname{Kl}_{n}(\psi, \chi, q, at^{n})$$
$$= \sigma_{t}(\operatorname{Kl}_{n}(\psi, \chi, q, a)) = \lambda \sigma_{t}(\operatorname{Kl}_{n}(\psi, \rho, q, b))$$
$$= \lambda \prod \overline{\rho}(t) \cdot \operatorname{Kl}_{n}(\psi, \rho, q, bt^{n}) = (-1)^{(n-1)d} \lambda \operatorname{Tr}(\operatorname{Frob}_{t}, \mathcal{F}_{\overline{t}}').$$

Apply Lemma to $r = s = n^d, M_0 = 0, M_\infty \le 1$.

伺 ト イヨ ト イヨト

Distinctness

Now

 $\mathcal{G}_{a}(\chi)\otimes\mathcal{L}_{\prod\overline{\chi}}\hookrightarrow\mathcal{F}_{b}(
ho)\otimes\mathcal{L}_{\prod\overline{
ho}},\quad\mathcal{G}_{b}(
ho)\otimes\mathcal{L}_{\prod\overline{
ho}}\hookrightarrow\mathcal{F}_{a}(\chi)\otimes\mathcal{L}_{\prod\overline{\chi}}.$

Thus the highest weight $\lambda_a(\chi) = \lambda_b(\rho)$. Derived from this, and combining Fisher's arguments, we have:

Theorem (Z.)

Let $a, b \in \mathbb{F}_q^{\times}$. Assume that χ, ρ are not Kummer-induced and neither of them is of type $(\xi_1, \xi_1^{-1}, 1, \Lambda_2)\xi_2$. If $p > (2n^{2d} + 1)^2$ and

$$\mathrm{Kl}_n(\psi, \boldsymbol{\chi}, \boldsymbol{q}, \boldsymbol{a}) = \lambda \mathrm{Kl}_n(\psi, \boldsymbol{\rho}, \boldsymbol{q}, \boldsymbol{b})$$

for some $\lambda \in \mu_{q-1}$, then there exists $\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ and a multiplicative character η , such that $b = \sigma(a)$ and $\rho = \eta \cdot (\chi \circ \sigma^{-1})$ as unordered tuples. Moreover, either both Kloosterman sums vanish or $\eta(b) = \lambda^{-1}$.

< ロ > < 同 > < 回 > < 回 >

Table of Contents

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

The last step is to show the non-vanishingness.

Theorem

If $p > (3n-1)C_{\chi} - n$ and for any *i*, *j*, $\chi_i = \chi_j$ if $\chi_i^n = \chi_j^n$, then $\text{Kl}_n(\psi, \chi, q, a)$ is nonzero. Here

$$C_{\boldsymbol{\chi}} = \max_{i,j} \operatorname{lcm} \left(\operatorname{ord}(\chi_i), \operatorname{ord}(\chi_j) \right)$$
(1)

is the supremum of least common multipliers of the orders of any two characters in χ .

We can express Kl_n as Gauss sums

$$(q-1)\operatorname{Kl}_n(\psi, \chi, q, a) = \sum_{m=0}^{q-2} \omega^m(a) \prod_{i=1}^n g(m+s_i)$$

by Fourier transform on \mathbb{F}_q^{\times} , where $\chi_i = \omega^{s_i}$ for a Teichmüller character. What we need to do is to proof there is a unique *m* such that the valuation of $\prod_{i=1}^n g(m+s_i)$ is minimal.

Theorem (Z.)

If $p > \max \{(2n^{2d} + 1)^2, (3n - 1)C_{\chi} - n\}$ and for any $i, j, \chi_i = \chi_j$ if $\chi_i^n = \chi_j^n$, then $\operatorname{Kl}_n(\psi, \chi, q, a)$ generates $\mathbb{Q}(\mu_{pc})^H$, where Hconsists of those $\sigma_t \tau_w$ such that there exists an integer β and a character η satisfying

$$t=\lambda a_1^eta,\lambda^{n_1}=1,\,\, oldsymbol{\chi}^{w}=\eta oldsymbol{\chi}^{q_1^eta},\,\,\eta(oldsymbol{a})=\prod oldsymbol{\chi}^{w}(t)$$

Here $n_1 = (n, p-1)$, $q_1 = \#\mathbb{F}_p(a^{(p-1)/n_1})$ and $a_1 \in \mathbb{F}_p^{\times}$ such that $a_1^{n/n_1} = \mathbb{N}_{\mathbb{F}_{q_1}/\mathbb{F}_p}(a^{(1-p)/n_1}) = a^{(1-q_1)/n_1}.$

伺 ト イヨ ト イヨト

An example: n = 2 case

Let $\chi = \{1, \chi\}$, where χ is a multiplicative character of order $c \neq 2$. If $p > \max\{(2^{2d+1} + 1)^2, 5c - 2)\}$, then $\mathrm{Kl}(\psi, \chi, p^d, a)$ generates $\mathbb{Q}(\mu_{pc})^H$, where

$$H = \begin{cases} \langle \tau_{q_1} \sigma_{a_1}, \sigma_{-1}, \tau_{-1} \rangle, & \text{if } \chi(-1) = 1, \chi(a) = 1; \\ \langle \tau_{-q_1} \sigma_{a_1}, \sigma_{-1} \rangle, & \text{if } \chi(-1) = 1, \chi(a) = \chi(a_1) = -1; \\ \langle \tau_{q_1^{\alpha}} \sigma_{a_1^{\alpha}}, \sigma_{-1} \rangle, & \text{if } \chi(-1) = 1, \chi(a)^{\alpha} \neq 1; \\ \langle \tau_{q_1} \sigma_{-a_1}, \tau_{-1} \sigma_{-1} \rangle, & \text{if } \chi(-1) = -1, \chi(a) = \chi(a_1) = -1; \\ \langle \tau_{q_1} \sigma_{a_1}, \tau_{-1} \rangle & \text{if } \chi(-1) = -1, \chi(a) = 1; \\ \langle \tau_{q_1} \sigma_{a_1}, \tau_{-1} \sigma_{-1} \rangle, & \text{if } \chi(-1) = -1, \chi(a) = -1, \chi(a_1) = 1; \\ \langle \tau_{q_1^{\alpha}} \sigma_{-a_1^{\alpha/2}} \rangle, & \text{if } \chi(-1) = -1, 2 \mid \alpha, \chi(a) \neq \pm 1; \\ \langle \tau_{q_1^{\alpha}} \sigma_{a_1^{\alpha}} \rangle, & \text{if } \chi(-1) = -1, 2 \nmid \alpha, \chi(a) \neq \pm 1. \end{cases}$$

 $q_1 = \#\mathbb{F}_p(a^{(1-p)/2}), a_1 = a^{(1-q_1)/2}$ and α is the order of $\chi(a_1) \in \mu_{p-1}$.

Consider the Kloosterman sums

$$S_k = \mathrm{Kl}(\psi, \boldsymbol{\chi} \circ \mathbf{N}_{\mathbb{F}_{q^k}/\mathbb{F}_q}, q^k, a).$$

If $p > \max \{(2n^{2dk} + 1)^2, (3n - 1)C_{\chi} - n\}$, then $\mathbb{Q}(S_k) = \mathbb{Q}(\mu_{pc})^H$, where H consists of those $\sigma_t \tau_w$ such that there exists an integer β and a character η on \mathbb{F}_a^{\times} satisfying

$$t = \lambda a_1^eta, \lambda^{n_1} = 1, \quad oldsymbol{\chi}^{oldsymbol{w}} = \eta oldsymbol{\chi}^{oldsymbol{q}_1^eta}, \quad \eta(oldsymbol{a}) = \gamma \cdot \prod oldsymbol{\chi}^{oldsymbol{w}}(t), \gamma^k = 1.$$

Thus $\mathbb{Q}(S_k) = \mathbb{Q}(S_{k-c})$ since $\gamma^c = 1$.

• • = • • = •

The *L*-function

$$L(T) = \exp\left(\sum_{k=1}^{\infty} \frac{T^k}{k} S_k\right)$$

is a rational function. Thus the sequence $\{S_k\}_k$ is linear recurrence sequence. The sequence $\{\mathbb{Q}(S_k)\}_{k\geq N}$ is periodic of period r for some N (Wan, Yin). Thus if $p > \max\left\{\left(2n^{2d(N+r)}+1\right)^2, (3n-1)C_{\chi}-n\right\}$, the generating field of S_k is determined by the previous equations for any k. For this purpose, we need to decrease the bound $(2n^{2d}+1)^2$ and estimate the period r and N. We conjecture that S_k has the predicted generating field if p > 3ndc.